On Multimatrix Models Motivated by Random Noncommutative Geometry I: The Functional Renormalization Group as a Flow in the Free Algebra

Author:

Pérez-Sánchez Carlos I.

Abstract

AbstractRandom noncommutative geometry can be seen as a Euclidean path-integral quantization approach to the theory defined by the Spectral Action in noncommutative geometry (NCG). With the aim of investigating phase transitions in random NCG of arbitrary dimension, we study the nonperturbative Functional Renormalization Group for multimatrix models whose action consists of noncommutative polynomials in Hermitian and anti-Hermitian matrices. Such structure is dictated by the Spectral Action for the Dirac operator in Barrett’s spectral triple formulation of fuzzy spaces. The present mathematically rigorous treatment puts forward “coordinate-free” language that might be useful also elsewhere, all the more so because our approach holds for general multimatrix models. The toolkit is a noncommutative calculus on the free algebra that allows to describe the generator of the renormalization group flow—a noncommutative Laplacian introduced here—in terms of Voiculescu’s cyclic gradient and Rota–Sagan–Stein noncommutative derivative. We explore the algebraic structure of the Functional Renormalization Group equation and, as an application of this formalism, we find the $$\beta $$ β -functions, identify the fixed points in the large-N limit and obtain the critical exponents of two-dimensional geometries in two different signatures.

Funder

Fundacja na rzecz Nauki Polskiej

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Reference78 articles.

1. Ambjørn, J., Jordan, S., Jurkiewicz, J., Loll, R.: Second- and first-order phase transitions in CDT. Phys. Rev. D 85, 124044 (2012)

2. Ambjorn, J., Jurkiewicz, J., Loll, R.: A nonperturbative Lorentzian path integral for gravity. Phys. Rev. Lett. 85, 924–927 (2000)

3. Ambjorn, J., Jurkiewicz, J., Loll, R.: Renormalization of 3-D quantum gravity from matrix models. Phys. Lett. B 581, 255–262 (2004)

4. Ambjorn, J., Jurkiewicz, J., Loll, R., Vernizzi, G.: 3-D Lorentzian quantum gravity from the asymmetric ABAB matrix model. Acta Phys. Polon. B 34, 4667–4688 (2003)

5. Azarfar, S., Khalkhali, M.: Random finite noncommutative geometries and topological recursion (2019). arXiv:1906.09362

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dually Weighted Multi-matrix Models as a Path to Causal Gravity-Matter Systems;Annales Henri Poincaré;2024-05-07

2. Computational explorations of a deformed fuzzy sphere;Journal of Mathematical Physics;2023-12-01

3. Dirac Operators for Matrix Algebras Converging to Coadjoint Orbits;Communications in Mathematical Physics;2023-03-18

4. Computing the spectral action for fuzzy geometries: from random noncommutative geometry to bi-tracial multimatrix models;Journal of Noncommutative Geometry;2022-12-29

5. BV quantization of dynamical fuzzy spectral triples;Journal of Physics A: Mathematical and Theoretical;2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3