Abstract
AbstractOne of the most striking features of gapped quantum phases that exhibit topological order is the presence of long-range entanglement that cannot be detected by any local order parameter. The formalism of projected entangled-pair states is a natural framework for the parameterization of gapped ground state wavefunctions which allows one to characterize topological order in terms of the virtual symmetries of the local tensors that encode the wavefunction. In their most general form, these symmetries are represented by matrix product operators acting on the virtual level, which leads to a set of algebraic rules characterizing states with topological quantum order. This construction generalizes the concepts of $${\mathsf {G}}$$
G
- and twisted injectivity; the corresponding matrix product operators encode all topological features of the theory and provide a complete picture of the ground state manifold on the torus. We show how the string-net models of Levin and Wen fit within this formalism and in doing so provide a particularly intuitive interpretation of the pentagon equation for F-symbols as the pulling of matrix product operators through the string-net tensor network. Our approach paves the way to finding novel topological phases beyond string nets and elucidates the description of topological phases in terms of entanglement Hamiltonians and edge theories.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献