Determination of the water-soluble polymer poly(N-vinylcaprolactam) in wastewater effluents by continuous-flow off-line pyrolysis-GC/MS

Author:

Vidovic Nada,Krauskopf Lisa-Maria,Jovancicevic Ivana,Antic Vesna,Schwarzbauer Jan

Abstract

AbstractHigh production rates and wide areas of application of water-soluble polymers indicate their potential occurrence in wastewater. Poly(N-vinylcaprolactam) (PNVCL) is such a water-soluble and poorly biodegradable polymer with non-ionic, non-sticky, non-toxic and thermosensitive properties. Its field of applications covers being a constituent in aerosol sprays, pump sprays, and lotions as well as its usage as flocculant in wastewater treatment plants. However, although discharged into sewage treatment plants at high amounts, analytical methods for determining water soluble polymers, in particular PNVCL, in environmental samples are still missing. Therefore, this study aims at developing an efficient analytical method for detecting trace levels of poly(N-vinylcaprolactam) in wastewaters by applying continuous-flow off-line Py-GC/MS for the first time. The approach was based on the identification of specific off-line pyrolysis products (ε-caprolactam, N-vinylcaprolactam) that haven been used in the following for a calibration process that allowed a quantitative determination. An evaluation including specificity, linearity, sensitivity and reproducibility characterized this approach as very suitable for detection of this polymer in complex environmental matrices such as wastewaters. Finally, the transferability has been checked by analyzing a real wastewater from a sewage treatment plant effluent. Here limitations especially due to matrix effects are lowering the sensitivity of the pyrolysis-based method. Nevertheless, a contamination with approx. 70 µg/L of poly(N-vinylcaprolactam) was determined pointing to a huge emission of PNVCL into the aquatic environment and a general high environmental relevance of this synthetic polymer. Noteworthy, this is the first report on the occurrence of poly(N-vinylcaprolactam) in environmental samples.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3