Adsorption of Cd2+ from synthetic wastewater by modified leaves of Eupatorium adenophorum and Acer oblongum: thermodynamics, kinetics and equilibrium studies

Author:

Joshi Hemant Kumar,Vishwakarma Mahesh Chandra,Kumar Rajesh,Sharma Harish,Joshi Sushil Kumar,Bhandari Narendra Singh

Abstract

AbstractHeavy metals cause outrageous ecological risks when released into the environment from many point and non-point sources. Biosorbents prepared from the leaves of Eupatorium adenophorum (AEA) and Acer oblongum (AAO) were used as practical solutions to remove the toxic heavy metal cadmium (Cd2+) from wastewater. Biosorption of Cd2+ was investigated using AEA and AAO biomass under batch conditions. The effect of operating variables like temperature, contact time, the pH impact, and initial metal concentration and biosorbent portion on Cd2+ removal has been studied. The optimal pH and the sorbent dosage were found to be 7.0 and 2.0 g L−1, respectively, and removal efficiency attained was 93.3% with an equilibrium removal time of 90 min. The equilibrium uptake of Cd2+ was evaluated by Freundlich, Langmuir, and Temkin isotherm models. The Langmuir isotherm model was proved fit confirming single layer of sorption. The biosorption of Cd2+ onto activated AEA and AAO biomass achieved were 45.45 mg g−1 and 44.64 mg g−1 respectively. The adsorption affinity of AEA toward Cd2+ was discovered a lot more prominent than AAO biomass. The kinetic data of Cd2+ biosorption onto activated AEA and AAO, fitted with a pseudo-second-order well with higher values of R2 (> 0.99). Thermodynamics disclosed that the adsorption process was spontaneous (∆G0 < 0), endothermic (∆H0 > 0), and feasible (ΔS0 > 0). The adsorption of Cd2+ onto AEA was more exothermic and spontaneous than the AAO biosorbent. Additionally, FT-IR and SEM analysis uncovered that Cd2+ were adsorbed onto selected biomassdue to –NH–, –COOH, –OH, and –NH2 groups. Ionic, coordination bond formation, and electrostatic interaction with Cd2+ demonstrated that they were promising biosorbent for wastewater treatment.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3