Author:
Culver Dominic Leon,VanKoughnett Paul
Abstract
AbstractAs a step towards understanding the $$\mathrm {tmf}$$
tmf
-based Adams spectral sequence, we compute the K(1)-local homotopy of $$\mathrm {tmf}\wedge \mathrm {tmf}$$
tmf
∧
tmf
, using a small presentation of $$L_{K(1)}\mathrm {tmf}$$
L
K
(
1
)
tmf
due to Hopkins. We also describe the K(1)-local $$\mathrm {tmf}$$
tmf
-based Adams spectral sequence.
Funder
Max Planck Institute for Mathematics
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference30 articles.
1. Baker, A.: $$L$$-complete Hopf algebroids and their comodules. In: Ausoni, C., Hess, K., Schrerer, J. (eds.) Alpine Perspectives on Algebraic Topology. Contemporary Mathematics, vol. 504. AMS Press, pp. 1–22 (2009)
2. Barthel, T., Frankland, M.: Completed power operations for Morava $$E$$-theory. Algebraic Geom. Topol. 15(4), 2065–2131 (2015)
3. Barthel, T., Heard, D.: The $$E_2$$-term of the $$K(n)$$-local $$E_n$$-Adams spectral sequence. Topol. Appl. 206, 190–214 (2016)
4. Behrens, M., Ormsby, K., Stapleton, N., Stojanoska, V.: On the ring of cooperations for 2-primary connective topological modular forms. J. Topol. 12(2), 577–657 (2019)
5. Behrens, M.: The construction of $$tmf$$. In: Douglas, C.L., Francis, J., Henriques, A.G., Hill, M.A. (eds.) Topological Modular Forms. Mathematical Surveys and Monographs, vol. 201. AMS Press, pp. 131–188 (2014)