Abstract
AbstractWe classify all 2-term $$L_\infty $$
L
∞
-algebras up to isomorphism. We show that such $$L_\infty $$
L
∞
-algebras are classified by a Lie algebra, a vector space, a representation (all up to isomorphism) and a cohomology class of the corresponding Lie algebra cohomology.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Baez, J.C., Crans, A.S.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12(1), 492–538 (2004). arXiv:math/0307263
2. Baez, J.C., Hoffnung, A.E., Rogers, C.L.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293(3), 701–725 (2009). arXiv:0808.0246
3. Baez, J.C., Stevenson, D., Crans, A.S., Schreiber, U.: From loop groups to 2-groups. Homol. Homotopy Appl. 9(2), 101–135 (2007). arXiv:math/0504123
4. Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 63(1), 85–124 (1948)
5. Hohm, O., Zwiebach, B.: $$L_\infty $$ Algebras and field theory. Fortschritte der Physik 65, no. 3–4 (2017). arXiv:1701.08824