Marked colimits and higher cofinality

Author:

Abellán García Fernando

Abstract

AbstractGiven a marked $$\infty $$ -category $$\mathcal {D}^{\dagger }$$ D (i.e. an $$\infty $$ -category equipped with a specified collection of morphisms) and a functor $$F: \mathcal {D}\rightarrow {\mathbb {B}}$$ F : D B with values in an $$\infty $$ -bicategory, we define "Equation missing", the marked colimit of F. We provide a definition of weighted colimits in $$\infty $$ -bicategories when the indexing diagram is an $$\infty $$ -category and show that they can be computed in terms of marked colimits. In the maximally marked case $$\mathcal {D}^{\sharp }$$ D , our construction retrieves the $$\infty $$ -categorical colimit of F in the underlying $$\infty $$ -category $$\mathcal {B}\subseteq {\mathbb {B}}$$ B B . In the specific case when "Equation missing", the $$\infty $$ -bicategory of $$\infty $$ -categories and $$\mathcal {D}^{\flat }$$ D is minimally marked, we recover the definition of lax colimit of Gepner–Haugseng–Nikolaus. We show that a suitable $$\infty $$ -localization of the associated coCartesian fibration $${\text {Un}}_{\mathcal {D}}(F)$$ Un D ( F ) computes "Equation missing". Our main theorem is a characterization of those functors of marked $$\infty $$ -categories $${f:\mathcal {C}^{\dagger } \rightarrow \mathcal {D}^{\dagger }}$$ f : C D which are marked cofinal. More precisely, we provide sufficient and necessary criteria for the restriction of diagrams along f to preserve marked colimits

Funder

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Algebra and Number Theory

Reference12 articles.

1. Abellán, G.F., Stern, W.: Theorem A for marked 2-categories. 2020 arXiv: 2002.12817

2. Abellán, G.F., Stern, W.: Enhanced twisted arrow categories. arXiv:2009.11969 (2020)

3. Cisinski, D.: Higher Categories and Homotopical Algebra. Cambridge University Press, Cambridge (2019)

4. Berman, J.: On lax colimits in $$\infty $$-categories. arXiv: 2006.10851 (2020)

5. Descotte, M.E., Dubuc, E.J., Szyld, M.: Sigma limits in 2-categories and flat pseudofunctors. Adv. Math. 718, 266–313 (2018). https://doi.org/10.1016/j.aim.2018.05.021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3