Abstract
AbstractGiven a marked $$\infty $$
∞
-category $$\mathcal {D}^{\dagger }$$
D
†
(i.e. an $$\infty $$
∞
-category equipped with a specified collection of morphisms) and a functor $$F: \mathcal {D}\rightarrow {\mathbb {B}}$$
F
:
D
→
B
with values in an $$\infty $$
∞
-bicategory, we define "Equation missing", the marked colimit of F. We provide a definition of weighted colimits in $$\infty $$
∞
-bicategories when the indexing diagram is an $$\infty $$
∞
-category and show that they can be computed in terms of marked colimits. In the maximally marked case $$\mathcal {D}^{\sharp }$$
D
♯
, our construction retrieves the $$\infty $$
∞
-categorical colimit of F in the underlying $$\infty $$
∞
-category $$\mathcal {B}\subseteq {\mathbb {B}}$$
B
⊆
B
. In the specific case when "Equation missing", the $$\infty $$
∞
-bicategory of $$\infty $$
∞
-categories and $$\mathcal {D}^{\flat }$$
D
♭
is minimally marked, we recover the definition of lax colimit of Gepner–Haugseng–Nikolaus. We show that a suitable $$\infty $$
∞
-localization of the associated coCartesian fibration $${\text {Un}}_{\mathcal {D}}(F)$$
Un
D
(
F
)
computes "Equation missing". Our main theorem is a characterization of those functors of marked $$\infty $$
∞
-categories $${f:\mathcal {C}^{\dagger } \rightarrow \mathcal {D}^{\dagger }}$$
f
:
C
†
→
D
†
which are marked cofinal. More precisely, we provide sufficient and necessary criteria for the restriction of diagrams along f to preserve marked colimits
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference12 articles.
1. Abellán, G.F., Stern, W.: Theorem A for marked 2-categories. 2020 arXiv: 2002.12817
2. Abellán, G.F., Stern, W.: Enhanced twisted arrow categories. arXiv:2009.11969 (2020)
3. Cisinski, D.: Higher Categories and Homotopical Algebra. Cambridge University Press, Cambridge (2019)
4. Berman, J.: On lax colimits in $$\infty $$-categories. arXiv: 2006.10851 (2020)
5. Descotte, M.E., Dubuc, E.J., Szyld, M.: Sigma limits in 2-categories and flat pseudofunctors. Adv. Math. 718, 266–313 (2018). https://doi.org/10.1016/j.aim.2018.05.021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献