Abstract
AbstractIn this note, we study the delooping of spaces and maps in homotopy type theory. We show that in some cases, spaces have a unique delooping, and give a simple description of the delooping in these cases. We explain why some maps, such as group homomorphisms, have a unique delooping. We discuss some applications to Eilenberg–MacLane spaces and cohomology.
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference12 articles.
1. Buchholtz, U., van Doorn, F., Rijke, E.: Higher groups in homotopy type theory. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. (2018), pp. 205-214
2. Bezem, M., Buchholtz, U., Cagne, Pi., Ian, D., Grayson, D.R.: Symmetry. https://github.com/UniMath/SymmetryBook
3. Brunerie, G., Ljungström, A., Mörtberg, A.: Synthetic cohomology theory in cubical agda. In: Computer Science Logic (CSL’22). (2022)
4. Buchholtz, U., Christensen, J.D., Taxerås, F.J.G., Rijke, E.: Central H-spaces and banded types. (2023). https://doi.org/10.48550/ARXIV.2301.02636
5. Christensen, J.D., Scoccola, L.: The Hurewicz theorem in Homotopy Type Theory. (2020). https://doi.org/10.48550/ARXIV.2007.05833
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Delooping cyclic groups with lens spaces in homotopy type theory;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08