Aquatic invertebrate mandibles and sclerotized remains in Quaternary lake sediments

Author:

Courtney-Mustaphi Colin J.,Steiner Enrica,von Fumetti Stefanie,Heiri Oliver

Abstract

AbstractSubfossil remains of aquatic invertebrates found in lacustrine sediments are useful paleoenvironmental indicators. Strongly scleroticized chitinous body parts from the exoskeleton or exuviae from invertebrates are often the most resistant to degradation during syn- and post-depositional processes. Invertebrate mandibles and body parts that superficially resemble mandibles, such as claw-like appendages and pygopodia, are frequently found in sieved Quaternary lacustrine, palustrine, and deltaic sediments. Guides, catalogs and atlases have been published that are well suited for the identification of subfossil remains for several invertebrate groups, such as chironomids, cladocerans, and ostracods, among others. However, aquatic invertebrate remains of several ecologically important invertebrate groups continue to be underused in paleoenvironmental studies, in part, because there are few visual keys or other documentation sources (e.g. descriptions, catalogs or atlases) that increase awareness and facilitate identification. Here we present sets of digital photomicrographs of pre-identified aquatic invertebrate specimens collected from streams, lakes and ponds that have been chemically cleared to preserve structures that are observed in subfossil remains in sieved sediment samples, commonly the > 100 μm size fractions. In addition, we present examples of these structures from Quaternary lake-sediment samples and cite the dispersed literature that demonstrate that these remains are preserved and remain identifiable in the fossil record. We document mandibles from several taxonomic groups that include Crustacea: Amphipoda, Isopoda, Ostracoda, and Notostraca; and Insecta orders: Coleoptera, Diptera, Ephemeroptera, Hemiptera, Odonata, Lepidoptera, Megaloptera, Plecoptera, and Trichoptera. The compilation of microphotographs also includes pygopodia and claw appendages of Plecoptera and Trichoptera, with additional images of other common invertebrate mouthpart and head remains. We describe several types of fossilizing structures that are, to our knowledge, not previously described in the paleoecological literature (e.g. mandibles of amphipods or plecopterans) but also show that some structures are considerably more variable than expected based on available descriptions, such as the mandibles of Ephemeroptera or Trichoptera, and that these can potentially be separated into different morphotypes useful for identification of subfossil material. We also discuss the potential of analyzing and interpreting the additional remains together with the remains of more commonly analyzed invertebrate groups (e.g. Chironomidae) to contribute to paleoenvironmental interpretations, which will allow assessments of functional groups (e.g. predators, shredders, grazers) or habitat types (e.g. littoral, profundal or lotic environments) that aquatic invertebrate remains originate from.

Funder

University of Basel

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Aquatic Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3