Genetic and morphologic determination of diatom community composition in surface sediments from glacial and thermokarst lakes in the Siberian Arctic

Author:

Huang S.,Herzschuh U.,Pestryakova L. A.,Zimmermann H. H.,Davydova P.,Biskaborn B. K.,Shevtsova I.,Stoof-Leichsenring K. R.ORCID

Abstract

AbstractLakes cover large parts of the climatically sensitive Arctic landscape and respond rapidly to environmental change. Arctic lakes have different origins and include the predominant thermokarst lakes, which are small, young and highly dynamic, as well as large, old and stable glacial lakes. Freshwater diatoms dominate the primary producer community in these lakes and can be used to detect biotic responses to climate and environmental change. We used specific diatom metabarcoding on sedimentary DNA, combined with next-generation sequencing and diatom morphology, to assess diatom diversity in five glacial and 15 thermokarst lakes within the easternmost expanse of the Siberian treeline ecotone in Chukotka, Russia. We obtained 163 verified diatom sequence types and identified 176 diatom species morphologically. Although there were large differences in taxonomic assignment using the two approaches, they showed similar high abundances and diversity of Fragilariceae and Aulacoseiraceae. In particular, the genetic approach detected hidden within-lake variations of fragilarioids in glacial lakes and dominance of centric Aulacoseira species, whereas Lindavia ocellata was predominant using morphology. In thermokarst lakes, sequence types and valve counts also detected high diversity of Fragilariaceae, which followed the vegetation gradient along the treeline. Ordination analyses of the genetic data from glacial and thermokarst lakes suggest that concentrations of sulfate (SO42−), an indicator of the activity of sulfate-reducing microbes under anoxic conditions, and bicarbonate (HCO3), which relates to surrounding vegetation, have a significant influence on diatom community composition. For thermokarst lakes, we also identified lake depth as an important variable, but SO42− best explains diatom diversity derived from genetic data, whereas HCO3 best explains the data from valve counts. Higher diatom diversity was detected in glacial lakes, most likely related to greater lake age and different edaphic settings, which gave rise to diversification and endemism. In contrast, small, dynamic thermokarst lakes are inhabited by stress-tolerant fragilarioids and are related to different vegetation types along the treeline ecotone. Our study demonstrated that genetic investigations of lake sediments can be used to interpret climate and environmental responses of diatoms. It also showed how lake type affects diatom diversity, and that such genetic analyses can be used to track diatom community changes under ongoing warming in the Arctic.

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Aquatic Science

Reference61 articles.

1. AMAP (2017) Snow, water, ice and permafrost in the arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp 1–269

2. Apothéloz-Perret-Gentil L, Cordonier A, Straub F, Iseli J, Esling P, Pawlowski J (2017) Taxonomy-free molecular diatom index for high-throughput eDNA biomonitoring. Mol Ecol Resour 17:1231–1242. https://doi.org/10.1111/1755-0998.12668

3. Biskaborn BK, Herzschuh U, Bolshiyanov D, Savelieva L, Diekmann B (2012) Environmental variability in northeastern Siberia during the last ~13,300 year inferred from lake diatoms and sediment-geochemical parameters. Palaeogeogr Palaeoclim Palaeoecol 329:22–36. https://doi.org/10.1016/j.palaeo.2012.02.003

4. Biskaborn B, Herzschuh U, Bolshiyanov D, Savelieva L, Zibulski R, Diekmann B (2013) Late Holocene thermokarst variability inferred from diatoms in a lake sediment record from the Lena Delta, Siberian Arctic. J Paleolimnol 49:155–170. https://doi.org/10.1007/s10933-012-9650-1

5. Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaloye R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kröger T, Lambiel C, Lanckman J-P, Luo D, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel ABK, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M, Lantuit H (2019a) Permafrost is warming at a global scale. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-018-08240-4

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3