Author:
De Vito Andrea,Geremia Nicholas,Marino Andrea,Bavaro Davide Fiore,Caruana Giorgia,Meschiari Marianna,Colpani Agnese,Mazzitelli Maria,Scaglione Vincenzo,Venanzi Rullo Emmanuele,Fiore Vito,Fois Marco,Campanella Edoardo,Pistarà Eugenia,Faltoni Matteo,Nunnari Giuseppe,Cattelan Annamaria,Mussini Cristina,Bartoletti Michele,Vaira Luigi Angelo,Madeddu Giordano
Abstract
Abstract
Objectives
Advancements in Artificial Intelligence(AI) have made platforms like ChatGPT increasingly relevant in medicine. This study assesses ChatGPT’s utility in addressing bacterial infection-related questions and antibiogram-based clinical cases.
Methods
This study involved a collaborative effort involving infectious disease (ID) specialists and residents. A group of experts formulated six true/false, six open-ended questions, and six clinical cases with antibiograms for four types of infections (endocarditis, pneumonia, intra-abdominal infections, and bloodstream infection) for a total of 96 questions. The questions were submitted to four senior residents and four specialists in ID and inputted into ChatGPT-4 and a trained version of ChatGPT-4. A total of 720 responses were obtained and reviewed by a blinded panel of experts in antibiotic treatments. They evaluated the responses for accuracy and completeness, the ability to identify correct resistance mechanisms from antibiograms, and the appropriateness of antibiotics prescriptions.
Results
No significant difference was noted among the four groups for true/false questions, with approximately 70% correct answers. The trained ChatGPT-4 and ChatGPT-4 offered more accurate and complete answers to the open-ended questions than both the residents and specialists. Regarding the clinical case, we observed a lower accuracy from ChatGPT-4 to recognize the correct resistance mechanism. ChatGPT-4 tended not to prescribe newer antibiotics like cefiderocol or imipenem/cilastatin/relebactam, favoring less recommended options like colistin. Both trained- ChatGPT-4 and ChatGPT-4 recommended longer than necessary treatment periods (p-value = 0.022).
Conclusions
This study highlights ChatGPT’s capabilities and limitations in medical decision-making, specifically regarding bacterial infections and antibiogram analysis. While ChatGPT demonstrated proficiency in answering theoretical questions, it did not consistently align with expert decisions in clinical case management. Despite these limitations, the potential of ChatGPT as a supportive tool in ID education and preliminary analysis is evident. However, it should not replace expert consultation, especially in complex clinical decision-making.
Funder
Università degli Studi di Sassari
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献