Ecotoxicity Evaluation of Industrial Waste and Construction Materials: Comparison Between Leachates from Granular Steel Slags and Steel Slags-Containing Concrete Through a Plant-Based Approach

Author:

Alias CarlottaORCID,Zerbini IlariaORCID,Abbà AlessandroORCID,Benassi Laura,Gelatti UmbertoORCID,Sorlini SabrinaORCID,Piovani GiovannaORCID,Feretti DonatellaORCID

Abstract

AbstractSteel slags, the main waste product from the steel industry, may have several reuse possibilities. Among others, building applications represent a crucial field. However, the potential impact of harmful substances on the environment should be assessed. The aim of this study was to assess the phytotoxicity of steel slags (SS) and concrete mixtures cast with a partial replacement of SS (CSS). Leaching tests were carried out on four SS and four CSS according to EN 12457-2 and UNI EN 15863, respectively. Each leachate was assayed using root elongation tests on 30 seeds of Allium cepa, Cucumis sativus, and Lepidium sativum, respectively, and on 12 bulbs of A. cepa. The latter also allowed the analysis of other macroscopic parameters of toxicity (turgidity, consistency, colour change and root tip shape) and the evaluation of the mitotic index on 20,000 root tip cells per sample. None of the samples induced phytotoxic effects on the organisms tested: all samples supported seedlings emergence, verified by root elongation comparable to, or even greater than, that of the negative controls, and did not affect cell division, as evidenced by mitotic index values. The absence of phytotoxicity demonstrated by the leachates allows SS and SS-derived concrete to be considered as reliable materials suitable for use in civil constructions or in other engineering applications, with economic and environmental advantages, such as the reduction of the final disposal in landfills as well as the consumption of natural resources.

Funder

Università degli Studi di Brescia

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Toxicology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3