Evaluation of Transmission Losses of Various Battery Electric Vehicles

Author:

Hengst JohannesORCID,Werra Matthias,Küçükay Ferit

Abstract

AbstractTransmission losses in battery electric vehicles have compared to internal combustion engine powertrains a larger share in the total energy consumption and play therefore a major role. Furthermore, the power flows not only during propulsion through the transmissions, but also during recuperation, whereby efficiency improvements have a double effect. The investigation of transmission losses of electric vehicles thus plays a major role. In this paper, three simulation models of the Institute of Automotive Engineering (the lossmap-based simulation model, the modular simulation model, and the 3D simulation model) are presented. The lossmap-based simulation model calculates transmission losses for electric and hybrid transmissions, where three spur gear transmission concepts for battery electric vehicles are investigated. The transmission concepts include a single-speed transmission as a reference and two two-speed transmissions. Then, the transmission lossmaps are integrated into the modular simulation model (backward simulation) and in the 3D simulation model (forward simulation), which improves the simulation results. The modular simulation model calculates the optimal operation of the transmission concepts and the 3D simulation model represents the more realistic behavior of the transmission concepts. The different transmission concepts are investigated in Worldwide Harmonized Light Vehicle Test Cycle and evaluated in terms of transmission losses as well as the total energy demand. The map-based simulation model allows the transmission losses to be broken down into the individual component losses, thus allowing transmission concepts to be examined and evaluated in terms of their efficiency in the early development stage to develop optimum powertrains for electric axle drives. By considering transmission losses in detail with a high degree of accuracy, less efficient concepts can be eliminated at an early development stage. As a result, only relevant concepts are built as prototypes, which reduces development costs.

Funder

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3