Real-Time Predictive Control of Path Following to Stabilize Autonomous Electric Vehicles Under Extreme Drive Conditions

Author:

Guo Ningyuan,Zhang XudongORCID,Zou Yuan

Abstract

AbstractA novel real-time predictive control strategy is proposed for path following (PF) and vehicle stability of autonomous electric vehicles under extreme drive conditions. The investigated vehicle configuration is a distributed drive electric vehicle, which allows to independently control the torques of each in-wheel motor (IWM) for superior stability, but bringing control complexities. The control-oriented model is established by the Magic Formula tire function and the single-track vehicle model. For PF and direct yaw moment control, the nonlinear model predictive control (NMPC) strategy is developed to minimize PF tracking error and stabilize vehicle, outputting front tires’ lateral force and external yaw moment. To mitigate the calculation burdens, the continuation/general minimal residual algorithm is proposed for real-time optimization in NMPC. The relaxation function method is adopted to handle the inequality constraints. To prevent vehicle instability and improve steering capacity, the lateral velocity differential of the vehicle is considered in phase plane analysis, and the novel stable bounds of lateral forces are developed and online applied in the proposed NMPC controller. Additionally, the Lyapunov-based constraint is proposed to guarantee the closed-loop stability for the PF issue, and sufficient conditions regarding recursive feasibility and closed-loop stability are provided analytically. The target lateral force is transformed as front steering angle command by the inversive tire model, and the external yaw moment and total traction torque are distributed as the torque commands of IWMs by optimization. The validations prove the effectiveness of the proposed strategy in improved steering capacity, desirable PF effects, vehicle stabilization, and real-time applicability.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3