Effect of scan-time shortening on the 11C-PHNO binding potential to dopamine D3 receptor in humans and test–retest reliability

Author:

Matsunaga KeikoORCID,Tonomura Misato,Abe Kohji,Shimosegawa Eku

Abstract

Abstract Objective 11C-PHNO is a PET radioligand most specific to dopamine D3 receptor (D3R). The long scan duration of 120 min used in quantification of 11C-PHNO binding to D3R in previous studies is challenging to subjects. The main objective of this study was to investigate the effects of shorter scan times on the binding of 11C-PHNO to D3R and test–retest reliability using the latest digital whole-body PET system. Methods Two 120-min 11C-PHNO brain scans were performed in 7 healthy subjects using a digital whole-body PET/CT. The binding potential relative to non-displaceable tracer in the tissue (BPND) of D3R-rich regions: the pallidum, ventral striatum (VST), substantia nigra (SN) and hypothalamus, were quantified using the simplified reference tissue model. The bias, correlation, and test–retest reliability of BPND, which includes the test–retest variability (TRV) and intraclass correlation coefficient (ICC), were evaluated and compared between scans of shorter durations (40–110 min post-injection) and the original 120-min scan acquisitions. Results Progressively, shorter scan durations were associated with underestimation of BPND, slightly decreased correlation with 120-min derived BPND, and decrease in test–retest reliability. The BPND values of the pallidum, VST and SN from the shortened 90-min scans showed excellent correlation with those derived from the 120-min scans (determination coefficients > 0.98), and the bias within 5%. The test–retest reliability of BPND in these regions derived from 90-min scan (TRV of 3% in the VST and pallidum, 7% in the SN and the ICC exceeded 0.88) was comparable to those obtained in previous 120-min studies using brain-dedicated PET scanners. In the hypothalamus, the BPND values obtained from scan-time less than 110 min showed bias larger than 5% and the TRV more than 9%. Conclusion The scan-time shortening causes bias and decreasing test–retest reliability of 11C-PHNO BPND. However, in the whole-body PET system, 90-min scan duration was sufficient for estimating the 11C-PHNO BPND in the D3R-rich striatum and SN with small bias and at the test–retest reliability comparable to those derived from 120-min scans using the brain-dedicated PET systems.

Funder

Shionogi

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3