Development of an Expert System for Prediction of Deposition Efficiency in Plasma Spraying

Author:

Bobzin K.,Heinemann H.,Dokhanchi S. R.

Abstract

AbstractDeposition efficiency (DE) serves as a key performance indicator in plasma spraying, which is tailored by dozens of intrinsic and extrinsic influencing factors. Due to the nonlinear and complex interdependencies of the influencing factors, increasing DE has always been a challenging undertaking in the process development of plasma spraying. Hence, employing modern computer-aided algorithms is inevitable to overcome these complexities. In this study, an expert system is developed to predict DE from process parameters using adaptive neuro-fuzzy inference system (ANFIS) and support-vector machine (SVM). The developed expert system consists of two subsystems: (1) SVM-models from a previous work of the authors are used to predict the in-flight particle properties from different process parameters based on simulation data sets and (2) an ANFIS is developed to predict DE from in-flight particle properties based on experimental data sets. The results show that the developed expert system is able to estimate DE precisely with root-mean-square error (RMSE) of about 1.1%. The proposed system enables sustainable and cost-effective coatings through the prediction of DE for each set of process parameters.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

Reference32 articles.

1. A. Vardelle, C. Moreau, N.J. Themelis, and C. Chazelas, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process, 2015, 35(3), p 491-509.

2. G. Mauer, K.-H. Rauwald, R. Mücke, and R. Vaßen, Monitoring and Improving the Reliability of Plasma Spray Processes, J. Therm. Spray Tech., 2017, 26(5), p 799-810.

3. K.E. Schneider et al. Thermal Spraying for Power Generation Components (John Wiley & Sons, 2006)

4. J. Richter, Entwicklung Einer Prozessregelung Für Das Atmosphärische Plasmaspritzen Zur Kompensation Elektrodenverschleißbedingter Effekte. Ilmenau, Technische Universität, Dissertation, 2013, Universitätsverlag Ilmenau, 2014 (in ger)

5. K. Seemann, Vorhersage Von Prozess- und Schichtcharakteristiken beim Atmosphärischen Plasmaspritzen mittels statistischer Modelle und Neuronaler Netze, Aachen, Technische Hochschule, Dissertation, 2005, 1st ed., Mainz, 2005 (in ger)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3