Debonding of Porous Coating: A Late Failure Mode of Uncemented, Partially Threaded Acetabular Components—Retrieval Analysis

Author:

Łapaj Łukasz,Sulej-Chojnacka Joanna,Rozwalka Justyna,Alaouir Abdulrahim,Markiewicz Tomasz,Chodór PawełORCID,Kiryluk Jan,Mróz Adrian,Zabrzyński Jan

Abstract

AbstractTitanium plasma-sprayed (TPS) porous coatings have been used in total hip arthroplasty for decades. They are considered reliable, and very few failure cases have been described so far. This retrieval study described a series of 20 acetabular components—where total or partial debonding occurred during in vivo use and aimed to explain the underlying failure mechanisms. Implants were examined using optical and electron microscopy (SEM), metallographic sections of retrievals were prepared while pathologic samples of periprosthetic tissues were examined for presence of wear debris. Data from metallographic slides indicated that debonding was initiated at free borders of the coating and tended to progress at the interface between the TPS layer and the shell. In some cases, total debonding occurred leading material wear of both the TPS layer and acetabular shell leading to massive release of metallic debris and accelerated polyethylene wear in third body mechanism. SEM examination demonstrated that splats forming the TPS layer exhibited features suggesting a high temperature gradient between the plasma sprayed layer and the substrate material existed, leading to porosity of splats and suboptimal bonding strength. This study demonstrated that coating application parameters and certain design features (screw holes, fins) may promote long-term failure due to debonding. Surgeons should be aware of this complication as it is most likely underreported, while manufacturers should consider more rigorous pre-clinical testing as suboptimal coating bonding may result in failures during long-term clinical use.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3