Influence of Preheating on Lamellar Gray Cast Iron for Surface Layer Welding applications with Plasma-Transferred Arc Powder and Metal Inert Gas Welding Processes with Duplex Steel as Filler Material

Author:

Reisgen U.,Oechsner M.,Sharma R.,Ellermeier J.,Andersohn G.,Engler T.,Zokoll E.,Heider B.,Gonzalez Olivares E.

Abstract

AbstractThe good capacity of gray cast iron for the manufacture of complex geometry components is widely recognized, but its low resistance to corrosion and low weldability complicate the use of this material for some industrial applications. The corrosion resistance can be improved by metallic surface layers using welding processes with low percentages of dilution between the filler and base material. However, the welding processes impose very high heat load on the base material, which in the case of cast iron could promote the formation of hard and brittle microstructures, facilitating the formation of cracks. This work deals with weld beads of duplex steel on lamellar gray cast iron made either by plasma-transferred arc powder (PTA-P) or by metal inert gas (MIG) using the cold metal transfer (CMT) technology, with emphasis on achieving low dilution, hardness and imperfections (internal porosities). Preheating was used to reduce the hardness in the heat-affected zone, while different levels of helium were added in the shielding gas to study its effect on the geometry and hardness of the weld beads. The results showed that the PTA-P process resulted in lower values of dilution and hardness because of a low cooling rate compared to that of the MIG-CMT process. In addition, it was observed that preheating the base material reduced the hardness of the heat-affected zone but increased the dilution of the weld bead.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3