Internal Diameter Coating by Warm Spraying of Fine WC-12Co Powders (− 10 + 2 µm) with Very Short Spray Distances up to 10 mm

Author:

Baumann I.,Tillmann W.,Schaak C.,Schmidt K.,Hagen L.,Zajaczkowski J.,Schmidtmann G.,Matthäus G.,Luo W.

Abstract

AbstractThe internal diameter (ID) coating by means of thermal spraying is currently experiencing growing interest in science and industry. In contrast to the well-established plasma- and arc-based spray techniques, there is a lack of knowledge concerning kinetic processes such as HVOF, HVAF and warm spray (WS). A major challenge represents the necessity of short spray distances and the compact design of novel ID spray guns with reduced combustion power. Conventional WC-Co powders (− 45 + 15 µm) are not able to achieve a sufficient heat and momentum transfer. The use of fine powders < 15 µm offers an approach to overcome this drawback as they feature a larger surface-to-volume ratio and a lower mass. However, the processing of fine powders requires suitable spray equipment and a sensitive parameter adjustment. In this study, warm spraying of fine WC-12Co powders (− 10 + 2 µm) with a novel ID spray gun (HVOF + N2) “ID RED” (Thermico Engineering GmbH, Germany) was investigated. First, the flame profile as well as the in-flight behavior of the particles along the spray jet (spray distances SD = 10-80 mm) was analyzed at different nitrogen flows NF = 15-115 L/min to find suitable spray parameter intervals. Subsequently, planar steel samples were coated with SD = 10-50 mm and constant NF = 90 L/min. Analyses regarding the microstructure, the mechanical properties and the phase evolution of the coatings were performed. The aim was to study spraying with the novel ID gun and to scrutinize shortest feasible spray distances. Finally, steel tubes (internal diameter of 81.6 mm and a wall thickness of 10.0 mm) were coated with SD = 20 mm and NF = 90 L/min to investigate in how far the results can be transferred to ID parts. Correlations between the particle behavior, the microstructure and the coating properties were made.

Funder

Technische Universität Dortmund

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3