Effect of Electromagnetic Boundary Conditions on Reliability of Plasma Torch Models

Author:

Zhukovskii Rodion,Chazelas Christophe,Vardelle Armelle,Rat Vincent,Distler Bernd

Abstract

AbstractThe cascaded-anode plasma torch makes it possible to get a longer and more stable plasma jet with higher specific enthalpy than conventional plasma torches. It is now used widely, but there are still few models of the cascaded-anode plasma torch. This study developed a 3-D time-dependent model that couples the gas phase and electrodes by encompassing the electromagnetic and heat equations both in the electrodes and gas phase. The model was applied to a commercial plasma spray gun equipped with a single cathode, single cylindrical anode and an inter-electrode insert to fix the average arc length. This paper examines the effect of the boundary conditions for the magnetic vector potential and electric current density on the electromagnetic, velocity and temperature fields of the plasma jet. The model predictions showed that, for such plasma torches where the arc is close to walls, the Biot and Savart formalism is required at the domain boundaries for the magnetic vector potential. They also showed that similar plasma fields could be obtained by imposing an electric current density profile at the cathode tip or by including the electrodes in the computational domain. However, this profile has to be chosen according to the specific design of the cathode, which is not obvious when the cathode has a design different from that of conventional plasma torches with sharp conical tip or rounded tip.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3