Numerical Investigation of the Effect of a Nozzle Extension on the Plasma Jet in Multi-Arc Plasma Spraying

Author:

Bobzin K.,Heinemann H.,Dokhanchi S. R.

Abstract

AbstractIn plasma spraying, compared to other thermal spraying process variants, only a small part of the available energy is used to build up a coating. Another peculiarity of this process is the relatively strong oxidation of the sprayed metallic particles, caused by the high temperatures and turbulent flow of the plasma jet in combination with the ambient air. A promising solution for increasing energy efficiency is a solid shroud that surrounds the plasma jet and thus prevents air entrainments from mixing with the plasma gas. The primary goal of this study is to develop a numerical model to investigate the effect of an external fixed nozzle extension on the plasma jet as a shroud in case of a multi-arc plasma generator. To this end, the existing simulation models of the plasma jet from the previous works of the authors were extended to model a solid nozzle extension at the outlet of a three-arc plasma generator. The developed parametrized model can be used to optimize the geometry of the nozzle extension based on experimental measurements to adapt it to the flow conditions of the plasma jet. The results revealed that the plasma temperature could be increased using the nozzle extension even with relatively cold process parameters, thereby raising the energy efficiency to melt the particles in plasma spraying.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3