Mixed-Material Feedstocks for Cold Spray Additive Manufacturing of Metal–Polymer Composites

Author:

Schwenger Matthew S.,Kaminskyj Madison S.,Haas Francis M.,Stanzione Joseph F.

Abstract

AbstractHigh-performance polymers such as poly(ether ether ketone) (PEEK) are appealing as composite components for a wide variety of industrial and medical applications due to their excellent thermomechanical properties. However, conventional PEEK metallization methods can often lead to poor quality control, low deposition rate, and high cost. Cold spray is a promising potential alternative to produce polymer–metal composites rapidly and inexpensively due to its relatively mild operating conditions and high throughput. In this study, we investigated the deposition characteristics of metal–polymer composite feedstock, composed of PEEK powder and copper flake in varying ratios, onto a PEEK substrate. Copper-PEEK powder blends were prepared by both hand-mixing and cryogenic milling (cryomilling), which predominantly creates composite particles with micron-scale copper domains coating PEEK particle surfaces. This process non-monotonically affects the relative dominance and length scales of the multiple contributing deposition mechanisms present in mixed-material cold spray. In low-pressure cold spray, deposits showed significant changes in deposition efficiency and composition as a result of milling, with improvements in these characteristics most dramatic at lower Cu fractions. Deposits of a cryomilled blend of nominally 30 vol.% copper in PEEK exhibited minimal porosity under scanning electron microscopy, complete retention of powder composition, and the highest deposition efficiency among all samples tested. Notably, neither neat PEEK nor neat Cu meaningfully deposited at the same mild conditions as this 30 vol.% Cu blend, indicating a synergistic departure from linear mixing rules driven by the relative balance of local deposition interactions (e.g., hard–soft, soft–soft, etc.). Intentional powder and process design toward optimizing this balance may facilitate cold spray metallization applications.

Funder

Rowan University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3