Ensemble-based Deep Learning Approach for Performance Improvement of BIM Element Classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s12205-023-2331-y.pdf
Reference50 articles.
1. Abualdenien J, Borrmann A (2022) Ensemble-learning approach for the classification of Levels Of Geometry (LOG) of building elements. Advanced Engineering Informatics 51:101497, DOI: https://doi.org/10.1016/j.aei.2021.101497
2. MSc Thesis;J Ajayakumar,2020
3. Arayici Y, Fernando T, Munoz V, Bassanino M (2018) Interoperability specification development for integrated BIM use in performance based design. Automation in Construction 85:167–181, DOI: https://doi.org/10.1016/j.autcon.2017.10.018
4. Belsky M, Sacks R, Brilakis I (2016) Semantic enrichment for building information modeling. Computer-Aided Civil and Infrastructure Engineering 31(4):261–274, DOI: https://doi.org/10.1111/mice.12128
5. Bienvenido Huertas D, Nieto-Julián JE, Moyano JJ, Macías Bernal JM, Castro J (2020) Implementing artificial intelligence in H-BIM using the J48 algorithm to manage historic buildings. International Journal of Architectural Heritage 14:1148–1160, DOI: https://doi.org/10.1080/15583058.2019.1589602
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification of architectural and MEP BIM objects for building performance evaluation;Advanced Engineering Informatics;2024-08
2. Automatic Fine-Grained BIM element classification using Multi-Modal deep learning (MMDL);Advanced Engineering Informatics;2024-08
3. Automated compliance checking for BIM models based on Chinese-NLP and knowledge graph: an integrative conceptual framework;Engineering, Construction and Architectural Management;2024-03-29
4. Comparative Evaluation of Deep Neural Network Performance for Point Cloud-Based IFC Object Classification;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3