Leveraging Machine Learning to Automatically Derive Robust Decision Strategies from Imperfect Knowledge of the Real World

Author:

Mehta Aashay,Jain Yash Raj,Kemtur Anirudha,Stojcheski Jugoslav,Consul Saksham,Tošić Mateo,Lieder FalkORCID

Abstract

AbstractTeaching people clever heuristics is a promising approach to improve decision-making under uncertainty. The theory of resource rationality makes it possible to leverage machine learning to discover optimal heuristics automatically. One bottleneck of this approach is that the resulting decision strategies are only as good as the model of the decision problem that the machine learning methods were applied to. This is problematic because even domain experts cannot give complete and fully accurate descriptions of the decisions they face. To address this problem, we develop strategy discovery methods that are robust to potential inaccuracies in the description of the scenarios in which people will use the discovered decision strategies. The basic idea is to derive the strategy that will perform best in expectation across all possible real-world problems that could have given rise to the likely erroneous description that a domain expert provided. To achieve this, our method uses a probabilistic model of how the description of a decision problem might be corrupted by biases in human judgment and memory. Our method uses this model to perform Bayesian inference on which real-world scenarios might have given rise to the provided descriptions. We applied our Bayesian approach to robust strategy discovery in two domains: planning and risky choice. In both applications, we find that our approach is more robust to errors in the description of the decision problem and that teaching the strategies it discovers significantly improves human decision-making in scenarios where approaches ignoring the risk that the description might be incorrect are ineffective or even harmful. The methods developed in this article are an important step towards leveraging machine learning to improve human decision-making in the real world because they tackle the problem that the real world is fundamentally uncertain.

Funder

Bundesministerium für Bildung und Forschung

Cyber Valley Research Fund

Max Planck Institute for Intelligent Systems

Publisher

Springer Science and Business Media LLC

Subject

Developmental and Educational Psychology,Neuropsychology and Physiological Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boosting Human Decision-making with AI-Generated Decision Aids;Computational Brain & Behavior;2022-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3