Examinations of Biases by Model Misspecification and Parameter Reliability of Reinforcement Learning Models

Author:

Toyama AsakoORCID,Katahira Kentaro,Kunisato Yoshihiko

Abstract

Abstract Reinforcement learning models have the potential to clarify meaningful individual differences in the decision-making process. This study focused on two aspects regarding the nature of a reinforcement learning model and its parameters: the problems of model misspecification and reliability. Online participants, N = 453, completed self-report measures and a probabilistic learning task twice 1.5 months apart, and data from the task were fitted using several reinforcement learning models. To address the problem of model misspecification, we compared the models with and without the influence of choice history, or perseveration. Results showed that the lack of a perseveration term in the model led to a decrease in learning rates for win and loss outcomes, with slightly different influences depending on outcome volatility, and increases in inverse temperature. We also conducted simulations to examine the mechanism of the observed biases and revealed that failure to incorporate perseveration directly affected the estimation bias in the learning rate and indirectly affected that in inverse temperature. Furthermore, in both model fittings and model simulations, the lack of perseveration caused win-stay probability underestimation and loss-shift probability overestimation. We also assessed the parameter reliability. Test–retest reliabilities were poor (learning rates) to moderate (inverse temperature and perseveration magnitude). A learning effect was noted in the inverse temperature and perseveration magnitude parameters, showing an increment of the estimates in the second session. We discuss possible misinterpretations of results and limitations considering the estimation biases and parameter reliability.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Developmental and Educational Psychology,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3