Epoxidation of Tall Oil Fatty Acids and Tall Oil Fatty Acids Methyl Esters Using the SpinChem® Rotating Bed Reactor

Author:

Polaczek Krzysztof,Kaulina Eliza,Pomilovskis Ralfs,Fridrihsone Anda,Kirpluks Mikelis

Abstract

AbstractTall oil fatty acids are a second-generation bio-based feedstock finding application in the synthesis of polyurethane materials. The study reported tall oil fatty acids and their methyl esters epoxidation in a rotating packed bed reactor. The chemical structure of the synthesized epoxidized tall oil fatty acids and epoxidized tall oil fatty acids methyl ester were studied by Fourier-transform infrared spectroscopy. Average molecular weight and dispersity were determined from gel permeation chromatography data. The feasibility of multiple uses of the Amberlite® IRC120 H ion exchange resin as a catalyst was investigated. Gel permeation chromatography chromatograms of epoxidized tall oil fatty acids clearly demonstrated the formation of oligomers during the epoxidation reaction. The results showed that methylation of tall oil fatty acids allows obtaining an epoxidized product with higher relative conversion to oxirane and much smaller viscosity than neat tall oil fatty acids. Epoxidation in a rotating packed bed reactor simplified the process of separating the catalyst from the reaction mixture. The Amberlite® IRC120 H catalyst exhibited good stability in the tall oil fatty acids epoxidation reaction. Graphical Abstract

Funder

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3