Biochar from Digestate Pyrolysis as a Filler for Biopolymer Blends: Effect of Blend Composition

Author:

Infurna Giulia,Botta Luigi,Ingargiola Irene,Maniscalco Marco,Caputo Giuseppe,Dintcheva Nadka Tz.

Abstract

Abstract This study investigates the effect of biochar (BC) as a filler for biopolymer blends, with a focus on the effect of the biopolymer weight ratio on the final BC-added blends. The blends studied in this work were obtained by varying the weight ratio of poly-butylene adipate-co-terephthalate (PBAT) and polylactic acid (PLA) due to their great importance in packaging and agricultural fields. BC has been produced in our laboratories by the slow pyrolysis of the digestate obtained from the anaerobic digestion of the organic fraction of municipal solid waste (OFMSW). After pyrolysis, digestate-derived biochar has been milled and sieved to produce a powdery form with diameter of less than 45 μm. In order to better investigate the filler/polymer interactions, biochar particles were dimensionally, morphologically and chemically characterised. The inhomogeneity of the feedstock is responsible for content and high diversity of inorganics in biochar surface. The effect of BC on PBAT and PLA biopolymer matrices is different, and for the blend compositions the relative weight ratio between PBAT and PLA plays an important role. Furthermore, the biocomposite blend has been fully characterised: rheological, morphological, mechanical and dynamic-mechanical characterisations have been carried out, highlighting how the properties results strongly influenced by the presence of BC in the blend. In addition, a study of the viscous molar mass of the two polymer matrices when processed in the presence or absence of BC particless highlighting that a strong chemical interaction occurs between PLA and BC particles, unlike PBAT and BC. Graphical Abstract

Funder

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3