Processing and Evaluation of Bio-Based Paramylon Ester/Poly(butylene succinate) Blends for Industrial Applications

Author:

Ilangovan ManikandanORCID,Kabe TaizoORCID,Iwata TadahisaORCID

Abstract

AbstractPoly(butylene succinate) (PBS) was melt-blended with paramylon based mixed ester, paramylon propionate hexanoate (PaPrHe) and characterized for its morphology, thermal and mechanical properties. The PBS/PaPrHe blends were found to be immiscible throughout the loading range of PaPrHe (10–90 wt%), with individual glass transition peaks. Due to the immiscibility, there was phase separation observed in the bulk, evident by sea-island morphology. However, further observation of the micro-structure revealed that, in low PaPrHe loading (10–30 wt%), there was a micron to sub-micron order distribution of PBS particles and partially miscible PBS/PaPrHe phase. On increasing the PaPrHe to 50 wt% and beyond, the sub-micron scale domains fused to form a co-continuous morphology. As a result, the impact strength of PBS increased from 6.6 to 16.4 kJ/m2 in the 50/50 blend. Under tensile loading, the strength at break and elongation decreased after the introduction of less-flexible PaPrHe particles in the blend. This could be countered by uniaxially stretching the blended films with 10–30 wt% PaPrHe, after which the tensile strength increased by up to 380% (from 33–52 MPa to 165–200 MPa) compared to the unstretched films, attributable to the increased degree of orientation of the molecular chains. In terms of thermal processability, all the blend ratios had high thermal degradation temperature (>350 °C), higher than the melt-flow temperature (124–133 °C) providing a wide processing window. Overall, PBS/PaPrHe blend is a novel bio-based blend with properties suitable for packaging, mulching, and related applications.

Funder

New Energy and Industrial Technology Development Organization

Japan Society for the Promotion of Science

The University of Tokyo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3