Wastewater Fines Influence the Adsorption Behavior of Pollutants onto Microplastics

Author:

Nikpay MitraORCID

Abstract

AbstractMillions of tons of microplastics (MPs) enter the wastewater collection systems every day and interact with raw sewage. In addition to MPs, varieties of organic and inorganic fines from urban effluents release into the sewer system and provide suitable surfaces for adsorption. To better understand the quantitative assessment of MPs sorption in wastewater and the role of fines, batch reactor experiments were performed using synthetic wastewater solutions containing organic, inorganic, and mixed organic–inorganic fines, and the results compared to a solution without fines. The MPs were two types of clean polypropylene (PP) particles, isotactic (iPP) and atactic (aPP). The results showed in all applied solutions the adsorption of pollutants was higher for the aPP averaging 1.3 mg/g compared with 0.5 mg/g for iPP, indicating that the adsorption varies with the type of polymer and surface properties. Further experiments also revealed a decrease in the sorption values of MPs for solutions containing inorganic fines, measured as the partition coefficient (Kd) and adsorbed concentration at equilibrium (qe). The result of the measured reference conductivity (к25) of the solutions for the same tests showed similar trends indicating that the magnitude of pollution adsorption onto MPs surfaces is controlled by the surface charge potential of the fine particles. The relationship between the qualitative assessments of ion removal, measured in terms of к25, and their quantitative assessment of adsorption values in terms of Kd in several identical tests, verifying that the conductivity of the solution was modified after adsorption of wastewater constituents onto the MPs.

Funder

sab

Hochschule für Technik und Wirtschaft Dresden (HTW)

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3