Abstract
AbstractThe usage of bioplastics could increase in the future which may cause contamination of the waste streams of conventional plastics. The objective of this study was to investigate if a small amount of biopolymer contaminating conventional polymers would significantly affect mechanical and thermal properties. A starch-based plastic was first compounded by blending plasticised starch with PLA (polylactic acid). This polymer blend was subsequently compounded with HDPE (high density polyethylene), PP (polypropylene) or PET (polyethylene terephthalate) at 0%, 1% and 5% of the biopolymer. The compounds were characterised by tensile tests, Charpy impact tests, DSC (differential scanning calorimetry) and FESEM (field emission scanning electron microscopy). Tests showed that PE and PP were not significantly affected in terms of tensile strength and modulus but the elongation at break showed a strong reduction. PET was, on the other hand, incompatible with the starch-based plastic. Already at 1% contamination, PET had lost most of its impact strength.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics,Environmental Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献