Rheology, Morphology and Thermal Properties of a PLA/PHB/Clay Blend Nanocomposite: The Influence of Process Parameters

Author:

D’Anna Alessandra,Arrigo Rossella,Frache Alberto

Abstract

AbstractThe effect of process parameters on the final properties of a poly-lactic acid (PLA) and polyhydroxybutyrate (PHB) polymer blend filled with nanoclays was evaluated. To this aim, the nanofilled blend was processed in a co-rotating twin screw extruder, considering three different screw profiles and different values of the screw rotation speed, and the thermal and thermo-mechanical properties of the so-obtained materials were investigated. Furthermore, XRD analyses, SEM observations and rheological characterization were exploited to infer the coupled effect of the process parameters and nanoclay presence on the microstructure of the filled blend. Preliminary thermodynamic calculations allowed predicting the preferential localization of the nanoclay in the interfacial region between the polymeric phases. The relaxation mechanism of the particles of the dispersed phase in nanofilled blend processed, by rheological measurements, is not fully completed due to an interaction between polymer ad filler in the interfacial region with a consequent modification of the blend morphology and, specifically, a development of an enhanced microstructure. Therefore, by varying the screw configuration, particularly the presence of backflow and distribution elements in the screw profile, high shear stresses are induced during the processing able to allow a better interaction between polymers and clay. This finding also occurs in the thermo-mechanical properties of material, as an improvement of storage modulus up to 20% in filled blend processed with a specific screw profile. Otherwise, the microstructure of filled blend processed with different screw speed is similar, according to the other characterizations where no remarkable alterations of materials were detected.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3