Interactions Between High Load of a Bio-based and Biodegradable Plastic and Nitrogen Fertilizer Affect Plant Biomass and Health: A Case Study with Fusarium solani and Mung Bean (Vigna radiata L.)

Author:

Scheid Sarah-Maria,Juncheed Kantida,Tanunchai BenjawanORCID,Wahdan Sara Fareed Mohamed,Buscot FrançoisORCID,Noll MatthiasORCID,Purahong WitoonORCID

Abstract

AbstractBio-based and biodegradable plastics such as mulching films are widely used in agricultural field sites. However, there are limited studies of their impact on plant development and health even though an important soil-borne plant pathogen F. solani has been reported to associate with various types of bio-based and biodegradable plastics, especially polybutylene succinate-co-adipate (PBSA). To evaluate the influence of PBSA amendment in soils on plant development and health, F. solani and mung bean (V. radiata) were used as models in a modified petri-dish test using soil suspensions. Mung bean seeds were incubated in suspensions with two dilutions (high vs. low dilution with low vs. high PBSA amendment) of soils pre-incubated 1 year with PBSA under different treatments (combinations of N fertilizer (ammonium sulfate) and PBSA load) in the modified petri dish test. Plant development and disease incidence were recorded with both microscopic and molecular techniques (specific PCR and Illumina amplicon sequencing). Treatment with PBSA and N fertilizer in non-sterile soil suspensions strongly increased the disease caused by F. solani on V. radiata at both low and high soil dilution. At high soil dilution, the F. solani disease incident was 67.5% while at the low dilution the disease incidence reached 92.5%. In contrast, in treatments PBSA but without N fertilizer, non F. solani disease was observed. Apart from F. solani infection, other soil fungi can also infect the mung bean seedlings, especially at low soil dilution levels. Nevertheless, based on this short-term study, we found no evidence that PBSA alone can significantly increase the overall disease incidence.

Funder

Helmholtz-Zentrum für Umweltforschung GmbH - UFZ

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3