Thermoplastic Blends Based on Poly(Butylene Succinate-co-Adipate) and Different Collagen Hydrolysates from Tanning Industry—II: Aerobic Biodegradation in Composting Medium

Author:

Altieri RobertoORCID,Seggiani Maurizia,Esposito Alessandro,Cinelli Patrizia,Stanzione Vitale

Abstract

AbstractTwo different raw hydrolyzed collagens (HCs), by-products of the Tannery industry, were investigated in blends with a bioplastic, as poly(butylene succinate-co-adipate) (PBSA), for the production of thermoplastic items for possible applications in agriculture. Chemical characterization of selected PBSA/HC blends and phytotoxicity assays on garden cress seeds (Lepidium sativum L.), used as spy species, were carried out; in addition, biodegradation and disintegration of specimens were assessed under controlled composting conditions at different temperature (58 and 25 °C). Although one of the HC investigated released sodium chloride in the aqueous extract, all PBSA/HC blends, up to 20 wt.% HC, resulted no-phytotoxic and showed considerable amounts of macro- and micro- nutrients for plants (mainly nitrogen). Regardless the amount added, HCs enhanced the biodegradation rate of PBSA/HC blends in compost at 58 °C compared to pure PBSA; lowering the temperature at 25 °C, as expected, biodegradation rate slightly lowered using the same compost. Most disintegration tests, performed on dog bone samples, corroborated the results of the biodegradation tests, thus suggesting that plastic mixtures could reasonably end their life cycle in a composting facility without decreasing the quality and the safety of the resulting compost. The outcomes achieved encourage the use of raw collagen hydrolysates from tanning industry in the production of PBSA-based thermoplastic blends to produce compostable items (mulching films and/or plant pots) for more sustainable uses in agriculture and/or plant nurseries. In addition, the use of these low-cost by-products can lower the cost of final product and give it fertilizing properties for plants given the presence of organic nitrogen in the hydrolysates.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Environmental Engineering

Reference30 articles.

1. European Commission, A European Strategy for Plastics in a Circular Economy, COM(2018) 28 final, 16.1.2018 Brussels.

2. Barrena R, Gea T, Ponsá S, Ruggieri L, Artola A, Font X, Sánchez A (2011) Compost Sci Uti 19(2):105. https://doi.org/10.1080/1065657X.2011.10736985

3. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2007) Chemosphere 73:429

4. Fujimaki T (1998) Polym Degrad Stab 59:209. https://doi.org/10.1016/S0141-3910(97)00220-6

5. Mitchell M, Ryder T, Hirt D (2017) Degradation of PBSA in water. California USA, SPE ANTEC, p 426

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3