Material flow control in make-to-stock production systems: an assessment of order generation, order release and production authorization by simulation

Author:

Thürer MatthiasORCID,Fernandes Nuno O.,Lödding Hermann,Stevenson Mark

Abstract

AbstractMaterial flow control (MFC) is a key element of production planning and control. The literature typically categorizes different MFC methods according to how MFC is realized. This distinction overlooks that MFC decisions can be subdivided into three independent tasks that are executed as orders progress through the system: (i) order generation, (ii) order release, and (iii) production authorization. MFC methods are typically designed for only one of these three tasks, which leaves a large part of the order flow uncontrolled. This study therefore not only provides a new categorization of MFC methods, but also argues for the simultaneous application (or the combining) of three different MFC methods for order generation, order release, and production authorization. To support this argument, the performance effects of an integrated MFC approach are evaluated. Findings show that each individual MFC method impacts different performance metrics, which can be explained by the presence of a hierarchy of workloads, where each workload level constrains the succeeding hierarchical level. Each MFC method has a main impact on a different workload. This has important implications for the design of MFC methods and extends recent literature on hierarchical production planning and control systems.

Funder

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3