A memetic NSGA-II for the multi-objective flexible job shop scheduling problem with real-time energy tariffs

Author:

Burmeister Sascha ChristianORCID,Guericke DanielaORCID,Schryen GuidoORCID

Abstract

AbstractRising costs for energy are increasingly becoming a vital factor for the production planning of manufacturing companies. Manufacturers face the challenge to react to dynamic energy prices and design energy cost efficient schedules in their production planning. In the literature, the energy cost-aware Flexible Job Shop Scheduling Problem addresses minimization of both makespan and energy costs. Recent studies provide multi-objective approaches to model the trade-off of minimizing makespan and energy costs. However, the literature is limited to coarse-grained time periods and does not consider dynamic tariffs where costs change at short intervals, so that production schedules may fall short on energy costs. We aim to close this research gap by considering frequently changing real-time energy tariffs. We propose a multi-objective memetic algorithm based on the non-dominated sorting genetic algorithm (NSGA-II) with both makespan and energy cost minimization as the objectives. We evaluate our approach by conducting computational experiments using prominent FJSP-benchmark instances from the literature, which we supplement with empiric dynamic energy prices. We show results on method performance and compare the memetic NSGA-II with the results of an exact state-of-the-art solver. To investigate the trade-off between a short makespan and low energy costs, we present solutions on the approximated Pareto front and discuss our results.

Funder

Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen

Universität Paderborn

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3