Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially more affected

Author:

Giannini Tereza CristinaORCID,Costa Wilian França,Borges Rafael Cabral,Miranda Leonardo,da Costa Claudia Priscila Wanzeler,Saraiva Antonio Mauro,Imperatriz Fonseca Vera Lucia

Abstract

AbstractThere is pressing need to anticipate the impacts of climate change on species and their functional contributions to ecosystem processes. Our objective is to evaluate the potential bee response to climate change considering (1) response traits—body size, nest site, and sociality; (2) contributions to ecosystem services (effect trait)—crop pollination; and (3) bees’ size of current occurrence area. We analyzed 216 species occurring at the Carajás National Forest (Eastern Amazon, Pará, Brazil), using two different algorithms and geographically explicit data. We modeled the current occurrence area of bees and projected their range shift under future climate change scenarios through species distribution modeling. We then tested the relationship of potential loss of occurrence area with bee traits and current occurrence area. Our projections show that 95% of bee species will face a decline in their total occurrence area, and only 15 to 4% will find climatically suitable habitats in Carajás. The results indicate an overall reduction in suitable areas for all traits analyzed. Bees presenting medium and restricted geographic distributions, as well as vital crop pollinators, will experience significantly higher losses in occurrence area. The potentially remaining species will be the wide-range habitat generalists, and the decline in crop-pollinator species will probably pose negative impact on pollination service. The north of Pará presented the greatest future climatic suitability and can be considered for conservation purposes. These findings emphasize the detrimental effects on biodiversity and agricultural production by climate change and provide data to support conservation planning.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3