Impacts of climate change on semi-natural alpine pastures productivity and floristic composition

Author:

Movedi Ermes,Bocchi Stefano,Paleari Livia,Vesely Fosco M.,Vagge Ilda,Confalonieri Roberto

Abstract

AbstractClimate change impact on pasture floristic composition needs to be carefully assessed, given its key role for the resilience of pastoral systems and related ecosystem services. Nevertheless, variations in floristic composition are rarely taken into account in climate change impact studies. Here, we used the plant community model CoSMo to simulate future dynamics of biomass accumulation and floristic composition for high-altitude semi-natural alpine pastures. Dedicated multi-site field activities were conducted to collect data for model calibration. Simulations were run for four 20-year climate scenarios centered on 2040, resulting from the combination of two general circulation models (GISS-ES and HadGEM2) and two representative concentration pathways (RCP4.5 and RCP8.5). Results highlighted the capability of CoSMo to successfully reproduce the productivity and floristic composition of semi-natural pastures, modeling efficiency and R2 being higher than 0.90 for aboveground biomass accumulation and relative abundance of species. CoSMo simulated an overall positive effect of increasing temperatures on pasture productivity (+ 10.7% on average), due to higher biomass accumulation rates and longer growing seasons. However, these benefits were highly heterogeneous among the monitored pastures (ranging from − 2.5 to + 16.2%), because of differences in floristic composition and in species-specific thermal requirements that led to complex, non-linear reactions to climate variations. A negative impact of climate change was simulated for grazing value (− 11.1% on average), due to the higher suitability to future conditions of Nardus stricta, which has low grazing value compared to other species. Our results highlight that floristic composition should be explicitly considered while assessing climate change impacts on semi-natural pasture productivity and connected ecosystem services.

Funder

Fondazione Cariplo

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3