Earth Observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe): current state and future directions

Author:

Crocetti LauraORCID,Forkel Matthias,Fischer Milan,Jurečka František,Grlj Aleš,Salentinig Andreas,Trnka Miroslav,Anderson Martha,Ng Wai-Tim,Kokalj Žiga,Bucur Andreea,Dorigo Wouter

Abstract

AbstractThe Pannonian Basin in southeastern Europe is heavily used for rain-fed agriculture. The region experienced several droughts in the last years, causing major yield losses. Ongoing climate change, characterised by increasing temperatures and potential evapotranspiration, and by changes in precipitation distribution will likely increase the frequency and intensity of drought episodes in the future. Hence, ongoing monitoring of droughts and estimation of their impact on agriculture is necessary to adapt agricultural practices to changing weather and climate extremes. Several regional initiatives, projects and online tools have been established to facilitate drought monitoring and management in the Pannonian Basin. However, reliable systems to forecast potential drought impacts on plant productivity and agricultural yields at monthly to seasonal scales are only in their infancy, as plant response to climatic extremes is still poorly understood. With the increasing availability of high-resolution and long-term Earth Observation (EO) data and recent progress in machine learning and artificial intelligence, further improvements in drought monitoring and impact prediction capacities are expected. Here we review the current state of drought monitoring in the Pannonian Basin, identify EO-based variables to potentially improve regional drought impact monitoring and outline future perspectives for seasonal forecasts of drought impacts on agriculture.

Funder

Technische Universität Wien Bibliothek

Publisher

Springer Science and Business Media LLC

Subject

Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3