A national-scale assessment of land use change in peatlands between 1989 and 2020 using Landsat data and Google Earth Engine—a case study of Ireland

Author:

Habib WahajORCID,Connolly JohnORCID

Abstract

AbstractOver the centuries, anthropogenic pressure has severely impacted peatlands on the European continent. Peatlands cover ~ 21% (1.46 Mha) of Ireland’s land surface, but 85% have been degraded due to management activities (land use). Ireland needs to meet its 2030 climate energy framework targets related to greenhouse gas (GHG) emissions from land use, land use change and forestry, including wetlands. Despite Ireland’s voluntary decision to include peatlands in this system in 2020, information on land use activities and associated GHG emissions from peatlands is lacking. This study strives to fill this information gap by using Landsat (5, 8) data with Google Earth Engine and machine learning to examine and quantify land use on Irish peatlands across three time periods: 1990, 2005 and 2019. Four peatland land use classes were mapped and assessed: industrial peat extraction, forestry, grassland and residual peatland. The overall accuracy of the classification was 86% and 85% for the 2005 and 2019 maps, respectively. The accuracy of the 1990 dataset could not be assessed due to the unavailability of high-resolution reference data. The results indicate that extensive management activities have taken place in peatlands over the past three decades, which may have negative impacts on its ecological integrity and the many ecosystem services provided. By utilising cloud computing, temporal mosaicking and Landsat data, this study developed a robust methodology that overcomes cloud contamination and produces the first peatland land use maps of Ireland with wall-to-wall coverage. This has the potential for regional and global applications, providing maps that could help understand unsustainable management practices on peatlands and the impact on GHG emissions.

Funder

Environmental Protection Agency

University of Dublin, Trinity College

Publisher

Springer Science and Business Media LLC

Subject

Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3