Abstract
AbstractThe generator of the semigroup associated with linear age-structured population models including spatial diffusion is shown to have compact resolvent.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Amann, H.: Linear and Quasilinear Parabolic Problems, vol. I, Monographs in Mathematics, vol. 89. Birkhäuser Boston, Inc., Boston (1995). Abstract linear theory
2. Baras, P., Hassan, J.-C., Véron, L.: Compacité de l’opérateur définissant la solution d’une équation d’évolution non homogène. C. R. Acad. Sci. Paris Sér. A-B 284, A799–A802 (1977)
3. Bátkai, A., Kramar Fijavž, M., Rhandi, A.: Positive operator semigroups, Operator Theory: Advances and Applications, vol. 257. Birkhäuser/Springer, Cham (2017). From finite to infinite dimensions, With a foreword by Rainer Nagel and Ulf Schlotterbeck
4. Rhandi, A.: Positivity and stability for a population equation with diffusion on $$L^1$$. Positivity 2, 101–113 (1998)
5. Rhandi, A., Schnaubelt, R.: Asymptotic behaviour of a non-autonomous population equation with diffusion in $$L^1$$. Discrete Contin. Dyn. Syst. 5, 663–683 (1999)