1. Abilov, V.A., Abilova, F.V., Kerimov, M.K.: Some Remarks Concerning the Fourier Transform in the Space $$\rm L_{2}(\mathbb{R}^{n})$$ L 2 ( R n ) . Comput. Math. Math. Physics 48(12), 2146–2153 (2008)
2. R. Daher and M. El Hamma, On Estimates for the Bessel Transform in the Space $$\rm L_{p,\alpha }(\mathbb{R}_{+})$$ L p , α ( R + ) Thai Journal of Mathematics Vol (11) (2013) No. 3. pp. 697–702.
3. Daher, R., El Hamma, M.: On Estimates for the Jacobi transform in the Space $$\rm L^{2}(\mathbb{R}^{+}, \Delta _{(\alpha,\beta )}(t)dt)$$ L 2 ( R + , Δ ( α , β ) ( t ) dt ) Inter. J. of Applied Mathematics. 25(1), 13–23 (2012)
4. Nikol’skii, S.M.: Approximation of Functions of Several Variables and Embedding Theorems. Nauka, Moscow (1969). [in Russian]
5. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton N. J (1971)