On groups associated with the affine subgroups of $$Sp_{2n}(2)$$

Author:

Musyoka D. M.,Prins A. L.,Njuguna L. N.,Chikamai L.

Abstract

AbstractThe symplectic group $$Sp_{2n}(2)$$ S p 2 n ( 2 ) has an affine maximal subgroup of structure $$ASp_n=2^{2n-1}{:}Sp_{2n-2}(2)$$ A S p n = 2 2 n - 1 : S p 2 n - 2 ( 2 ) which is a split extension of an elementary abelian 2-group $$N=2^{2n-1}$$ N = 2 2 n - 1 by $$G=Sp_{2n-2}(2)$$ G = S p 2 n - 2 ( 2 ) . The vector space $$N=2^{2n-1}$$ N = 2 2 n - 1 and its dual $$N^{*}$$ N are not equivalent as $$2n-1$$ 2 n - 1 dimensional G-modules over GF(2). Therefore, a split extension of the form $$\overline{G}_n=N^{*}{:}Sp_{2n-2}(2)\ncong N{:}Sp_{2n-2}(2)$$ G ¯ n = N : S p 2 n - 2 ( 2 ) N : S p 2 n - 2 ( 2 ) exists. In this paper, it will be shown that $$\overline{G}_n\cong \text {Aut}(2^{2n-2}{:}Sp_{2n-2}(2))= \left( 2^{2n-2}{:}Sp_{2n-2}(2)\right) {:} 2$$ G ¯ n Aut ( 2 2 n - 2 : S p 2 n - 2 ( 2 ) ) = 2 2 n - 2 : S p 2 n - 2 ( 2 ) : 2 for $$n\ge 3$$ n 3 . Moreover, the ordinary irreducible characters of $$\overline{G}_n$$ G ¯ n are studied through the lens of Fischer-Clifford theory. As an example, the Fischer-Clifford matrix technique is used to construct the set Irr$$(\overline{G}_5)$$ ( G ¯ 5 ) of the group $$\overline{G}_5=2^9{:}Sp_{8}(2)$$ G ¯ 5 = 2 9 : S p 8 ( 2 ) which is associated with the affine subgroup $$ASp_5=2^9{:}Sp_{8}(2)$$ A S p 5 = 2 9 : S p 8 ( 2 ) of $$Sp_{10}(2)$$ S p 10 ( 2 ) .

Funder

National Research Foundation

Publisher

Springer Science and Business Media LLC

Reference17 articles.

1. Ali, F.: Fischer-Clifford Theory for Split and Non-Split Group Extensions, PhD Thesis, University of Natal (2001)

2. Bosma, W., Canon, J.J.: Handbook of Magma Functions. University of Sydney, Department of Mathematics (November 1994)

3. Chileshe, C.: Irreducible characters of Sylow p-Subgroups associated with some classical linear groups, PhD Thesis, North-West University (2016)

4. Cline, E., Parshall, B., Brian, Scott, L.: Cohomology of finite groups of Lie type, I, Inst. Hautes Études Sci. Publ. Math. 45, 169–191 (1975)

5. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Oxford (1985)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3