Climatic characteristics of mesoscale convective systems in the warm season in North China

Author:

Long Linxue,He Lihua,Li JiangboORCID,Zhang Wenlong,Zhang Yingxin

Abstract

AbstractIn this study, a total of 339 mesoscale convective systems (MCSs) are obtained in North China using the temperature of brightness blackbody (TBB) data from the FY-2E in the warm season from 2010 to 2018. The number of meso-α-scale convective systems (MαCSs) is much more than that of meso-β-scale convective systems (MβCSs). The number of mesoscale elongated convective systems (MECSs) is more than that of mesoscale circular convective systems (MCCSs). Most MCSs occur in July and August, which have the widest influence range, the longest duration, and the strongest convection. The MαCS develops slowly and weakens rapidly. The diurnal variation of MαCSs presents a bimodal distribution, most of MαCSs form in the afternoon, while some of MαCSs form in the evening. The MCSs activities in the warm season of North China are concentrated in two belts, namely, the east–west-oriented belt along Henan Province, Shandong Province and the Yellow Sea, and the south–north-oriented belt along central-western Shandong, Tianjin City, the west of Bohai Sea and the northeast of Hebei Province. MCSs mainly move eastward, and only some MECSs move southwestward and northwestward. The easterly and northerly moving MCSs are mainly affected by the steering flow, while the southerly moving MCSs are mainly affected by storm propagation. The MCSs of North China mainly form in the high temperature, high humidity and high energy area, with favorable dynamic conditions, such as middle-level trough or vortex, low-level shear line, surface inverted trough or surface convergence line, and the terrain. Meanwhile, the MCS pregnant environment is often accompanied by low-level jet and relatively strong vertical wind shear.

Funder

the National Key Research and Development Program

the National Natural Science Foundation of China

Science and Technology Program of Hebei

the Science and Technology Program of Hebei

and the Research project of Hebei Meteorological Bureau

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3