Short-term wind speed predictions with machine learning techniques

Author:

Ghorbani M. A.,Khatibi R.,FazeliFard M. H.,Naghipour L.,Makarynskyy O.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference53 articles.

1. Arellano GM, Nolle L, Bland J (2012) Improving WRF-ARW wind speed predictions using genetic programming. Res Dev Intell Syst XXIX. doi: 10.1007/978-1-4471-4739-8_27

2. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic programming-introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann, San Francisco, CA, USA

3. Barbounis TG, Theocharis JB (2007) A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 70(7–9):1525–1542

4. Beyer HG, Degner T, Haussmann J, Homan M, Rujan P (1994) Short term forecast of wind speed and power output of a wind turbine with neural networks. In: Proceeding the 2nd European congress on intelligent techniques and soft computing, Aachen (Germany)

5. Bilgili M, Sahin B (2010) Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorol Atmos Phys 109(1–2):61–72

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A deep learning approach for wind downscaling using spatially correlated global wind data;International Journal of Data Science and Analytics;2024-09-11

2. Modeling multivariate intraday forecast update processes for wind power;Energy Economics;2024-09

3. Extreme weather events on energy systems: a comprehensive review on impacts, mitigation, and adaptation measures;Sustainable Energy Research;2024-01-16

4. Hybrid Machine Learning Approach for Wind Power Forecasting;2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC);2023-12-19

5. Prediction and forecast of surface wind using ML tree-based algorithms;Meteorology and Atmospheric Physics;2023-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3