1. Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL (United States).
2. Mahanthesh, B., & Thriveni, K. (2021). Effects of aggregation on TiO2–ethylene glycol nano liquid over an inclined cylinder with exponential space-based heat source: A sensitivity analysis. Journal of Thermal Analysis and Calorimetry, 147, 835–1848.
3. Wakif, A., Chamkha, A., Thumma, T., Animasaun, I. L., & Sehaqui, R. (2020). Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. Journal of Thermal Analysis and Calorimetry, 1–20, 1201–1220.
4. Farooq, U., Waqas, H., Imran, M., Albakri, A., & Muhammad, T. (2021). Numerical investigation for melting heat transport of nanofluids due to stretching surface with Cattaneo-Christov thermal model. Alexandria Engineering Journal, 61(9), 6635–6644.
5. Farooq, U., Waqas, H., Khan, M. I., Khan, S. U., Chu, Y. M., & Kadry, S. (2021). Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source. Alexandria Engineering Journal, 60(3), 3073–3086.