A clinical assessment of three-dimensional-printed liver model navigation for thrice or more repeated hepatectomy based on a conversation analysis

Author:

Igami Tsuyoshi,Maehigashi Akihiro,Nakamura Yoshihiko,Hayashi Yuichiro,Oda Masahiro,Yokoyama Yukihiro,Mizuno Takashi,Yamaguchi Junpei,Onoe Shunsuke,Sunagawa Masaki,Watanabe Nobuyuki,Baba Taisuke,Kawakatsu Shoji,Mori Kensaku,Miwa Kazuhisa,Ebata Tomoki

Abstract

Abstract Purposes We performed a conversation analysis of the speech conducted among the surgical team during three-dimensional (3D)-printed liver model navigation for thrice or more repeated hepatectomy (TMRH). Methods Seventeen patients underwent 3D-printed liver navigation surgery for TMRH. After transcription of the utterances recorded during surgery, the transcribed utterances were coded by the utterer, utterance object, utterance content, sensor, and surgical process during conversation. We then analyzed the utterances and clarified the association between the surgical process and conversation through the intraoperative reference of the 3D-printed liver. Results In total, 130 conversations including 1648 segments were recorded. Utterance coding showed that the operator/assistant, 3D-printed liver/real liver, fact check (F)/plan check (Pc), visual check/tactile check, and confirmation of planned resection or preservation target (T)/confirmation of planned or ongoing resection line (L) accounted for 791/857, 885/763, 1148/500, 1208/440, and 1304/344 segments, respectively. The utterance’s proportions of assistants, F, F of T on 3D-printed liver, F of T on real liver, and Pc of L on 3D-printed liver were significantly higher during non-expert surgeries than during expert surgeries. Confirming the surgical process with both 3D-printed liver and real liver and performing planning using a 3D-printed liver facilitates the safe implementation of TMRH, regardless of the surgeon’s experience. Conclusions The present study, using a unique conversation analysis, provided the first evidence for the clinical value of 3D-printed liver for TMRH for anatomical guidance of non-expert surgeons.

Funder

Nagoya University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3