Abstract
AbstractThe aim of this paper is to propose a novel computational technique of applying reliability-based design to thermoelastic structural topology optimization. Therefore, the optimization of thermoelastic structures' topology based on reliability-based design is considered by utilizing geometrical nonlinearity analysis. For purposes of introducing reliability-based optimization, the volume fraction parameter is viewed as a random variable with a normal distribution having a mean value and standard deviation. The Monte Carlo simulation approach for probabilistic designs is used to calculate the reliability index, which is used as a constraint related to the volume fraction constraint of the deterministic problem. A new bi-directional evolutionary structural optimization scheme is developed, in which a geometrically nonlinear thermoelastic model is applied in the sensitivity analysis. The impact of changing the constraint of a defined volume of the required design in deterministic problems is examined. Additionally, the impact of altering the reliability index in probabilistic problems is investigated. The effectiveness of the suggested approach is shown using a benchmark problem. Additionally, this research takes into account probabilistic thermoelastic topology optimization for a 2D L-shaped beam problem.
Funder
Széchenyi István University
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献