Effect of different strain rates on mechanical behavior and structure of Inconel 718 produced by powder bed fusion

Author:

Kolomy Stepan,Benc Marek,Harant Martin,Sedlak Josef,Jopek Miroslav

Abstract

AbstractThe paper aims to examine the effect of different strain rates on a mechanical behavior and structure of additively manufactured Inconel 718. The material was prepared by the powder bed fusion method, which is commonly employed for high-performance components subjected to both high static and dynamic loading. To analyze the material’s behavior at various strain rates, a conventional hydraulic testing machine and a split hopkinson pressure bar apparatus were utilized. Additionally, the effect of these conditions on mechanical properties and microstructure was investigated. Results of compressive tests revealed a positive strain rate sensitivity of the material. Furthermore, the microhardness exhibited an increase by 33.9% in the horizontal direction after deformation caused by 2·10–2 strain rate and 35.8% in the vertical direction, respectively. Additionally, the average grain size decreased by 43.3%, and the high-angle grain boundaries decreased by 5.4% in the horizontal direction after the excessive plastic deformation at the strain rate of 1.8·103 s-1. Scanning electron microscopy images showed that the as-built structure predominantly consisted of Laves phases in a long strip shape, while the structure after dynamic testing featured a granular shape. Transmission electron microscopy analysis of a sample tested at strain rate of 0.002 s-1 revealed finely developed grains within the structure, many of which contained a dislocation substructure. This study’s novelty and robustness lie in its significant contribution to practical industrial energy applications, in which parts are exposed to dynamic load such as gas turbines.

Funder

Vysoké Učení Technické v Brně

Brno University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3