Image-based recognition of surgical instruments by means of convolutional neural networks

Author:

Lehr JanORCID,Kelterborn Kathrin,Briese Clemens,Schlueter Marian,Kroeger Ole,Krueger Joerg

Abstract

Abstract Purpose This work presents a novel camera-based approach for the visual recognition of surgical instruments. In contrast to the state of the art, the presented approach works without any additional markers. The recognition is the first step for the implementation of tracking and tracing of instruments wherever they are visible and could be seen by camera systems. Recognition takes place at item number level. Surgical instruments that share the same article number also share the same functions. A distinction at this level of detail is sufficient for most clinical applications. Methods In this work, an image-based data set with over 6500 images is generated from 156 different surgical instruments. Forty-two images were acquired from each surgical instrument. The largest part is used to train convolutional neural networks (CNNs). The CNN is used as a classifier, where each class corresponds to an article number of the surgical instruments used. Only one surgical instrument exists per article number in the data set. Results With a suitable amount of validation and test data, different CNN approaches are evaluated. The results show a recognition accuracy of up to 99.9% for the test data. To achieve these accuracies, an EfficientNet-B7 was used. It was also pre-trained on the ImageNet data set and then fine-tuned on the given data. This means that no weights were frozen during the training, but all layers were trained. Conclusion With recognition accuracies of up to 99.9% on a highly meaningful test data set, recognition of surgical instruments is suitable for many track and trace applications in the hospital. But the system has limitations: A homogeneous background and controlled lighting conditions are required. The detection of multiple instruments in one image in front of various backgrounds is part of future work.

Funder

Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medical instrument detection with synthetically generated data;Medical Imaging 2024: Imaging Informatics for Healthcare, Research, and Applications;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3