Advancing surgical VQA with scene graph knowledge

Author:

Yuan Kun,Kattel Manasi,Lavanchy Joël L.,Navab Nassir,Srivastav Vinkle,Padoy Nicolas

Abstract

Abstract Purpose The modern operating room is becoming increasingly complex, requiring innovative intra-operative support systems. While the focus of surgical data science has largely been on video analysis, integrating surgical computer vision with natural language capabilities is emerging as a necessity. Our work aims to advance visual question answering (VQA) in the surgical context with scene graph knowledge, addressing two main challenges in the current surgical VQA systems: removing question–condition bias in the surgical VQA dataset and incorporating scene-aware reasoning in the surgical VQA model design. Methods First, we propose a surgical scene graph-based dataset, SSG-VQA, generated by employing segmentation and detection models on publicly available datasets. We build surgical scene graphs using spatial and action information of instruments and anatomies. These graphs are fed into a question engine, generating diverse QA pairs. We then propose SSG-VQA-Net, a novel surgical VQA model incorporating a lightweight Scene-embedded Interaction Module, which integrates geometric scene knowledge in the VQA model design by employing cross-attention between the textual and the scene features. Results Our comprehensive analysis shows that our SSG-VQA dataset provides a more complex, diverse, geometrically grounded, unbiased and surgical action-oriented dataset compared to existing surgical VQA datasets and SSG-VQA-Net outperforms existing methods across different question types and complexities. We highlight that the primary limitation in the current surgical VQA systems is the lack of scene knowledge to answer complex queries. Conclusion We present a novel surgical VQA dataset and model and show that results can be significantly improved by incorporating geometric scene features in the VQA model design. We point out that the bottleneck of the current surgical visual question–answer model lies in learning the encoded representation rather than decoding the sequence. Our SSG-VQA dataset provides a diagnostic benchmark to test the scene understanding and reasoning capabilities of the model. The source code and the dataset will be made publicly available at: https://github.com/CAMMA-public/SSG-VQA.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. Maier-Hein L, Eisenmann M, Sarikaya D, März K, Collins T, Malpani A, Fallert J, Feussner H, Giannarou S, Mascagni P (2022) Surgical data science-from concepts toward clinical translation. Media 76:102306

2. Padoy N (2019) Machine and deep learning for workflow recognition during surgery. Minim Invasive Ther Allied Technol 28(2):82–90

3. Nwoye CI, Yu T, Gonzalez C, Seeliger B, Mascagni P, Mutter D, Marescaux J, Padoy N (2022) Rendezvous: attention mechanisms for the recognition of surgical action triplets in endoscopic videos. Media 78:102433

4. Carstens M, Rinner FM, Bodenstedt S, Jenke AC, Weitz J, Distler M, Speidel S, Kolbinger FR (2023) The Dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Sci Data 10(1):1–8

5. Twinanda AP, Shehata S, Mutter D, Marescaux J, De Mathelin M, Padoy N (2016) EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging 36(1):86–97

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3